Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Phosphate is the third nutrient monitored by TOR in Candida albicans and provides a target for fungal-specific indirect TOR inhibition.

Identifieur interne : 000774 ( Main/Exploration ); précédent : 000773; suivant : 000775

Phosphate is the third nutrient monitored by TOR in Candida albicans and provides a target for fungal-specific indirect TOR inhibition.

Auteurs : Ning-Ning Liu [États-Unis] ; Peter R. Flanagan [Irlande (pays)] ; Jumei Zeng [États-Unis] ; Niketa M. Jani [États-Unis] ; Maria E. Cardenas [États-Unis] ; Gary P. Moran [Irlande (pays)] ; Julia R. Köhler [États-Unis]

Source :

RBID : pubmed:28566496

Descripteurs français

English descriptors

Abstract

The Target of Rapamycin (TOR) pathway regulates morphogenesis and responses to host cells in the fungal pathogen Candida albicans Eukaryotic Target of Rapamycin complex 1 (TORC1) induces growth and proliferation in response to nitrogen and carbon source availability. Our unbiased genetic approach seeking unknown components of TORC1 signaling in C. albicans revealed that the phosphate transporter Pho84 is required for normal TORC1 activity. We found that mutants in PHO84 are hypersensitive to rapamycin and in response to phosphate feeding, generate less phosphorylated ribosomal protein S6 (P-S6) than the WT. The small GTPase Gtr1, a component of the TORC1-activating EGO complex, links Pho84 to TORC1. Mutants in Gtr1 but not in another TORC1-activating GTPase, Rhb1, are defective in the P-S6 response to phosphate. Overexpression of Gtr1 and a constitutively active Gtr1Q67L mutant suppresses TORC1-related defects. In Saccharomyces cerevisiae pho84 mutants, constitutively active Gtr1 suppresses a TORC1 signaling defect but does not rescue rapamycin hypersensitivity. Hence, connections from phosphate homeostasis (PHO) to TORC1 may differ between C. albicans and S. cerevisiae The converse direction of signaling from TORC1 to the PHO regulon previously observed in S. cerevisiae was genetically shown in C. albicans using conditional TOR1 alleles. A small molecule inhibitor of Pho84, a Food and Drug Administration-approved drug, inhibits TORC1 signaling and potentiates the activity of the antifungals amphotericin B and micafungin. Anabolic TORC1-dependent processes require significant amounts of phosphate. Our study shows that phosphate availability is monitored and also controlled by TORC1 and that TORC1 can be indirectly targeted by inhibiting Pho84.

DOI: 10.1073/pnas.1617799114
PubMed: 28566496
PubMed Central: PMC5474788


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Phosphate is the third nutrient monitored by TOR in
<i>Candida albicans</i>
and provides a target for fungal-specific indirect TOR inhibition.</title>
<author>
<name sortKey="Liu, Ning Ning" sort="Liu, Ning Ning" uniqKey="Liu N" first="Ning-Ning" last="Liu">Ning-Ning Liu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Boston Children's Hospital and Harvard Medical School, Boston, MA 02115.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Boston Children's Hospital and Harvard Medical School, Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Flanagan, Peter R" sort="Flanagan, Peter R" uniqKey="Flanagan P" first="Peter R" last="Flanagan">Peter R. Flanagan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Oral Biosciences, School of Dental Science, Trinity College Dublin, Dublin 2, Ireland.</nlm:affiliation>
<country xml:lang="fr">Irlande (pays)</country>
<wicri:regionArea>Division of Oral Biosciences, School of Dental Science, Trinity College Dublin, Dublin 2</wicri:regionArea>
<wicri:noRegion>Dublin 2</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zeng, Jumei" sort="Zeng, Jumei" uniqKey="Zeng J" first="Jumei" last="Zeng">Jumei Zeng</name>
<affiliation wicri:level="2">
<nlm:affiliation>Boston Children's Hospital and Harvard Medical School, Boston, MA 02115.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Boston Children's Hospital and Harvard Medical School, Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Jani, Niketa M" sort="Jani, Niketa M" uniqKey="Jani N" first="Niketa M" last="Jani">Niketa M. Jani</name>
<affiliation wicri:level="2">
<nlm:affiliation>Boston Children's Hospital and Harvard Medical School, Boston, MA 02115.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Boston Children's Hospital and Harvard Medical School, Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Cardenas, Maria E" sort="Cardenas, Maria E" uniqKey="Cardenas M" first="Maria E" last="Cardenas">Maria E. Cardenas</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Moran, Gary P" sort="Moran, Gary P" uniqKey="Moran G" first="Gary P" last="Moran">Gary P. Moran</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Oral Biosciences, School of Dental Science, Trinity College Dublin, Dublin 2, Ireland.</nlm:affiliation>
<country xml:lang="fr">Irlande (pays)</country>
<wicri:regionArea>Division of Oral Biosciences, School of Dental Science, Trinity College Dublin, Dublin 2</wicri:regionArea>
<wicri:noRegion>Dublin 2</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kohler, Julia R" sort="Kohler, Julia R" uniqKey="Kohler J" first="Julia R" last="Köhler">Julia R. Köhler</name>
<affiliation wicri:level="3">
<nlm:affiliation>Boston Children's Hospital and Harvard Medical School, Boston, MA 02115; julia.koehler@childrens.harvard.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Boston Children's Hospital and Harvard Medical School, Boston</wicri:regionArea>
<placeName>
<settlement type="city">Boston</settlement>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28566496</idno>
<idno type="pmid">28566496</idno>
<idno type="doi">10.1073/pnas.1617799114</idno>
<idno type="pmc">PMC5474788</idno>
<idno type="wicri:Area/Main/Corpus">000803</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000803</idno>
<idno type="wicri:Area/Main/Curation">000803</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000803</idno>
<idno type="wicri:Area/Main/Exploration">000803</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Phosphate is the third nutrient monitored by TOR in
<i>Candida albicans</i>
and provides a target for fungal-specific indirect TOR inhibition.</title>
<author>
<name sortKey="Liu, Ning Ning" sort="Liu, Ning Ning" uniqKey="Liu N" first="Ning-Ning" last="Liu">Ning-Ning Liu</name>
<affiliation wicri:level="2">
<nlm:affiliation>Boston Children's Hospital and Harvard Medical School, Boston, MA 02115.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Boston Children's Hospital and Harvard Medical School, Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Flanagan, Peter R" sort="Flanagan, Peter R" uniqKey="Flanagan P" first="Peter R" last="Flanagan">Peter R. Flanagan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Oral Biosciences, School of Dental Science, Trinity College Dublin, Dublin 2, Ireland.</nlm:affiliation>
<country xml:lang="fr">Irlande (pays)</country>
<wicri:regionArea>Division of Oral Biosciences, School of Dental Science, Trinity College Dublin, Dublin 2</wicri:regionArea>
<wicri:noRegion>Dublin 2</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zeng, Jumei" sort="Zeng, Jumei" uniqKey="Zeng J" first="Jumei" last="Zeng">Jumei Zeng</name>
<affiliation wicri:level="2">
<nlm:affiliation>Boston Children's Hospital and Harvard Medical School, Boston, MA 02115.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Boston Children's Hospital and Harvard Medical School, Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Jani, Niketa M" sort="Jani, Niketa M" uniqKey="Jani N" first="Niketa M" last="Jani">Niketa M. Jani</name>
<affiliation wicri:level="2">
<nlm:affiliation>Boston Children's Hospital and Harvard Medical School, Boston, MA 02115.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
<wicri:cityArea>Boston Children's Hospital and Harvard Medical School, Boston</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Cardenas, Maria E" sort="Cardenas, Maria E" uniqKey="Cardenas M" first="Maria E" last="Cardenas">Maria E. Cardenas</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Moran, Gary P" sort="Moran, Gary P" uniqKey="Moran G" first="Gary P" last="Moran">Gary P. Moran</name>
<affiliation wicri:level="1">
<nlm:affiliation>Division of Oral Biosciences, School of Dental Science, Trinity College Dublin, Dublin 2, Ireland.</nlm:affiliation>
<country xml:lang="fr">Irlande (pays)</country>
<wicri:regionArea>Division of Oral Biosciences, School of Dental Science, Trinity College Dublin, Dublin 2</wicri:regionArea>
<wicri:noRegion>Dublin 2</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kohler, Julia R" sort="Kohler, Julia R" uniqKey="Kohler J" first="Julia R" last="Köhler">Julia R. Köhler</name>
<affiliation wicri:level="3">
<nlm:affiliation>Boston Children's Hospital and Harvard Medical School, Boston, MA 02115; julia.koehler@childrens.harvard.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Boston Children's Hospital and Harvard Medical School, Boston</wicri:regionArea>
<placeName>
<settlement type="city">Boston</settlement>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antifungal Agents (pharmacology)</term>
<term>Candida albicans (drug effects)</term>
<term>Candida albicans (genetics)</term>
<term>Candida albicans (metabolism)</term>
<term>Fungal Proteins (antagonists & inhibitors)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Gene Deletion (MeSH)</term>
<term>Genes, Fungal (MeSH)</term>
<term>Hyphae (genetics)</term>
<term>Hyphae (growth & development)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (antagonists & inhibitors)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (genetics)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (metabolism)</term>
<term>Models, Biological (MeSH)</term>
<term>Monomeric GTP-Binding Proteins (genetics)</term>
<term>Monomeric GTP-Binding Proteins (metabolism)</term>
<term>Mutation (MeSH)</term>
<term>Phosphates (metabolism)</term>
<term>Proton-Phosphate Symporters (antagonists & inhibitors)</term>
<term>Proton-Phosphate Symporters (genetics)</term>
<term>Proton-Phosphate Symporters (metabolism)</term>
<term>Regulon (MeSH)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Antifongiques (pharmacologie)</term>
<term>Candida albicans (effets des médicaments et des substances chimiques)</term>
<term>Candida albicans (génétique)</term>
<term>Candida albicans (métabolisme)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (antagonistes et inhibiteurs)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (génétique)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (métabolisme)</term>
<term>Délétion de gène (MeSH)</term>
<term>Gènes fongiques (MeSH)</term>
<term>Hyphae (croissance et développement)</term>
<term>Hyphae (génétique)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Phosphates (métabolisme)</term>
<term>Protéines G monomériques (génétique)</term>
<term>Protéines G monomériques (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines fongiques (antagonistes et inhibiteurs)</term>
<term>Protéines fongiques (génétique)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Régulon (MeSH)</term>
<term>Symporteurs des ions proton-phosphate (antagonistes et inhibiteurs)</term>
<term>Symporteurs des ions proton-phosphate (génétique)</term>
<term>Symporteurs des ions proton-phosphate (métabolisme)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Fungal Proteins</term>
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Proton-Phosphate Symporters</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Fungal Proteins</term>
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Monomeric GTP-Binding Proteins</term>
<term>Proton-Phosphate Symporters</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Fungal Proteins</term>
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Monomeric GTP-Binding Proteins</term>
<term>Phosphates</term>
<term>Proton-Phosphate Symporters</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antifungal Agents</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Protéines fongiques</term>
<term>Symporteurs des ions proton-phosphate</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Hyphae</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Candida albicans</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Candida albicans</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Candida albicans</term>
<term>Hyphae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Hyphae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Candida albicans</term>
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Hyphae</term>
<term>Protéines G monomériques</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines fongiques</term>
<term>Symporteurs des ions proton-phosphate</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Candida albicans</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Candida albicans</term>
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Phosphates</term>
<term>Protéines G monomériques</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines fongiques</term>
<term>Symporteurs des ions proton-phosphate</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antifongiques</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Deletion</term>
<term>Genes, Fungal</term>
<term>Models, Biological</term>
<term>Mutation</term>
<term>Regulon</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Délétion de gène</term>
<term>Gènes fongiques</term>
<term>Modèles biologiques</term>
<term>Mutation</term>
<term>Régulon</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The Target of Rapamycin (TOR) pathway regulates morphogenesis and responses to host cells in the fungal pathogen
<i>Candida albicans</i>
Eukaryotic Target of Rapamycin complex 1 (TORC1) induces growth and proliferation in response to nitrogen and carbon source availability. Our unbiased genetic approach seeking unknown components of TORC1 signaling in
<i>C. albicans</i>
revealed that the phosphate transporter Pho84 is required for normal TORC1 activity. We found that mutants in
<i>PHO84</i>
are hypersensitive to rapamycin and in response to phosphate feeding, generate less phosphorylated ribosomal protein S6 (P-S6) than the WT. The small GTPase Gtr1, a component of the TORC1-activating EGO complex, links Pho84 to TORC1. Mutants in Gtr1 but not in another TORC1-activating GTPase, Rhb1, are defective in the P-S6 response to phosphate. Overexpression of Gtr1 and a constitutively active Gtr1
<sup>Q67L</sup>
mutant suppresses TORC1-related defects. In
<i>Saccharomyces cerevisiae pho84</i>
mutants, constitutively active Gtr1 suppresses a TORC1 signaling defect but does not rescue rapamycin hypersensitivity. Hence, connections from phosphate homeostasis (PHO) to TORC1 may differ between
<i>C. albicans</i>
and
<i>S. cerevisiae</i>
The converse direction of signaling from TORC1 to the PHO regulon previously observed in
<i>S. cerevisiae</i>
was genetically shown in
<i>C. albicans</i>
using conditional
<i>TOR1</i>
alleles. A small molecule inhibitor of Pho84, a Food and Drug Administration-approved drug, inhibits TORC1 signaling and potentiates the activity of the antifungals amphotericin B and micafungin. Anabolic TORC1-dependent processes require significant amounts of phosphate. Our study shows that phosphate availability is monitored and also controlled by TORC1 and that TORC1 can be indirectly targeted by inhibiting Pho84.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28566496</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>05</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>114</Volume>
<Issue>24</Issue>
<PubDate>
<Year>2017</Year>
<Month>06</Month>
<Day>13</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Phosphate is the third nutrient monitored by TOR in
<i>Candida albicans</i>
and provides a target for fungal-specific indirect TOR inhibition.</ArticleTitle>
<Pagination>
<MedlinePgn>6346-6351</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1617799114</ELocationID>
<Abstract>
<AbstractText>The Target of Rapamycin (TOR) pathway regulates morphogenesis and responses to host cells in the fungal pathogen
<i>Candida albicans</i>
Eukaryotic Target of Rapamycin complex 1 (TORC1) induces growth and proliferation in response to nitrogen and carbon source availability. Our unbiased genetic approach seeking unknown components of TORC1 signaling in
<i>C. albicans</i>
revealed that the phosphate transporter Pho84 is required for normal TORC1 activity. We found that mutants in
<i>PHO84</i>
are hypersensitive to rapamycin and in response to phosphate feeding, generate less phosphorylated ribosomal protein S6 (P-S6) than the WT. The small GTPase Gtr1, a component of the TORC1-activating EGO complex, links Pho84 to TORC1. Mutants in Gtr1 but not in another TORC1-activating GTPase, Rhb1, are defective in the P-S6 response to phosphate. Overexpression of Gtr1 and a constitutively active Gtr1
<sup>Q67L</sup>
mutant suppresses TORC1-related defects. In
<i>Saccharomyces cerevisiae pho84</i>
mutants, constitutively active Gtr1 suppresses a TORC1 signaling defect but does not rescue rapamycin hypersensitivity. Hence, connections from phosphate homeostasis (PHO) to TORC1 may differ between
<i>C. albicans</i>
and
<i>S. cerevisiae</i>
The converse direction of signaling from TORC1 to the PHO regulon previously observed in
<i>S. cerevisiae</i>
was genetically shown in
<i>C. albicans</i>
using conditional
<i>TOR1</i>
alleles. A small molecule inhibitor of Pho84, a Food and Drug Administration-approved drug, inhibits TORC1 signaling and potentiates the activity of the antifungals amphotericin B and micafungin. Anabolic TORC1-dependent processes require significant amounts of phosphate. Our study shows that phosphate availability is monitored and also controlled by TORC1 and that TORC1 can be indirectly targeted by inhibiting Pho84.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Ning-Ning</ForeName>
<Initials>NN</Initials>
<AffiliationInfo>
<Affiliation>Boston Children's Hospital and Harvard Medical School, Boston, MA 02115.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Flanagan</LastName>
<ForeName>Peter R</ForeName>
<Initials>PR</Initials>
<AffiliationInfo>
<Affiliation>Division of Oral Biosciences, School of Dental Science, Trinity College Dublin, Dublin 2, Ireland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zeng</LastName>
<ForeName>Jumei</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Boston Children's Hospital and Harvard Medical School, Boston, MA 02115.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jani</LastName>
<ForeName>Niketa M</ForeName>
<Initials>NM</Initials>
<AffiliationInfo>
<Affiliation>Boston Children's Hospital and Harvard Medical School, Boston, MA 02115.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cardenas</LastName>
<ForeName>Maria E</ForeName>
<Initials>ME</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Moran</LastName>
<ForeName>Gary P</ForeName>
<Initials>GP</Initials>
<AffiliationInfo>
<Affiliation>Division of Oral Biosciences, School of Dental Science, Trinity College Dublin, Dublin 2, Ireland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Köhler</LastName>
<ForeName>Julia R</ForeName>
<Initials>JR</Initials>
<AffiliationInfo>
<Affiliation>Boston Children's Hospital and Harvard Medical School, Boston, MA 02115; julia.koehler@childrens.harvard.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI095305</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 CA154499</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R21 AI096054</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>05</Month>
<Day>31</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000935">Antifungal Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C105495">PHO84 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010710">Phosphates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D028081">Proton-Phosphate Symporters</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.5.2</RegistryNumber>
<NameOfSubstance UI="D020559">Monomeric GTP-Binding Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000935" MajorTopicYN="N">Antifungal Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002176" MajorTopicYN="N">Candida albicans</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017353" MajorTopicYN="N">Gene Deletion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005800" MajorTopicYN="N">Genes, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025301" MajorTopicYN="N">Hyphae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020559" MajorTopicYN="N">Monomeric GTP-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010710" MajorTopicYN="N">Phosphates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028081" MajorTopicYN="N">Proton-Phosphate Symporters</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018085" MajorTopicYN="N">Regulon</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">amphotericin B</Keyword>
<Keyword MajorTopicYN="Y">antifungal</Keyword>
<Keyword MajorTopicYN="Y">drug potentiation</Keyword>
<Keyword MajorTopicYN="Y">echinocandin</Keyword>
<Keyword MajorTopicYN="Y">ribosomal protein S6 phosphorylation</Keyword>
</KeywordList>
<CoiStatement>The authors declare no conflict of interest.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>6</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>5</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>6</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28566496</ArticleId>
<ArticleId IdType="pii">1617799114</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1617799114</ArticleId>
<ArticleId IdType="pmc">PMC5474788</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Cell Biol. 2010 Jul;30(14):3695-710</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20457806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2012 Sep;192(1):73-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22964838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2009 Feb;5(2):e1000294</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19197361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2014 Apr;196(4):1077-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24514902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Aug 31;107(35):15335-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20702768</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drugs. 1991 Jan;41(1):104-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1706982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2011 Jul;9(7):e1001105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21811397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMJ. 2004 Apr 17;328(7445):908-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15087326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 May 14;99(10):6784-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11997479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2012 Feb;11(2):168-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22194462</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2005 Apr 26;15(8):702-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15854902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20918-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19075239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2001 Dec;159(4):1491-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11779791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2015 Oct 16;6:984</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26528243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2009 Dec;5(12):e1000783</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20041210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1177-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2012 Aug 1;445(3):413-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22587366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2005 Jan 18;44(2):511-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15641775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2013 Sep 15;12(18):2948-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23974112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DICP. 1991 Jan;25(1):41-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1848959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2001 Dec;12 (12 ):4103-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11739804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Jun 10;269(23):16333-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8206940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2016 Jul 07;7:1062</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27458452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2002 Aug 28;526(1-3):31-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12208499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drugs. 2013 Jun;73(9):919-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23729001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Sep 11;35(5):563-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19748353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Apr 14;275(15):11198-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10753927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2003 Feb;47(4):1163-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12581367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Commun Integr Biol. 2008 Jul;1(1):23-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19430540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2005 Feb;4(2):298-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15701792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Apr 13;46(1):105-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22424774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Apr 25;496(7446):533-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23542591</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Dec 15;13(24):3271-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10617575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1999 Jul;152(3):853-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10388807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jul 25;418(6896):387-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12140549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2008 Jan;4(1):25-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18059263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 12;279(11):10270-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14679193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 23;279(17):17289-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14966138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2009 Feb;46(2):126-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19095072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1992 Jul;12(7):2958-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1620108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2015 Dec 11;11(12):e1005714</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26659116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2005 Feb;73(2):1239-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15664973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Apr 13;149(2):274-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22500797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Dec;12 (6):1607-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14690612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2015 Oct;98(2):384-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26173379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2890-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20133652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2013 Feb;12(2):278-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23243064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virulence. 2017 Feb 17;8(2):198-210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27459018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Sep 21;27(6):1005-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17889672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2014 Dec;22(12):707-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25262420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Oct 14;44(18):e143</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27407107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2005 Jan;4(1):63-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15643061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2002 Dec 19;347(25):2020-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12490683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol. 1989 Feb;256(2 Pt 1):C322-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2537572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9565-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15972809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2015 Nov 17;13(7):1481-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26549450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1990 Dec;4(12 ):2013-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1965216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2001 Nov;45(11):3162-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11600372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2009 Oct;8(10):1498-510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19700637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2016 Sep 1;27(17 ):2784-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27385340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2004 Feb;51(3):691-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14731272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2016 Jan 06;6(3):641-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26739646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1996 Jan;7(1):25-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8741837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D667-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22064862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2005 Dec 21;24(24):4271-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16308562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1991 Jun;11(6):3229-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2038328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 May 20;105(20):7194-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18443284</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Irlande (pays)</li>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
<li>Massachusetts</li>
</region>
<settlement>
<li>Boston</li>
</settlement>
</list>
<tree>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Liu, Ning Ning" sort="Liu, Ning Ning" uniqKey="Liu N" first="Ning-Ning" last="Liu">Ning-Ning Liu</name>
</region>
<name sortKey="Cardenas, Maria E" sort="Cardenas, Maria E" uniqKey="Cardenas M" first="Maria E" last="Cardenas">Maria E. Cardenas</name>
<name sortKey="Jani, Niketa M" sort="Jani, Niketa M" uniqKey="Jani N" first="Niketa M" last="Jani">Niketa M. Jani</name>
<name sortKey="Kohler, Julia R" sort="Kohler, Julia R" uniqKey="Kohler J" first="Julia R" last="Köhler">Julia R. Köhler</name>
<name sortKey="Zeng, Jumei" sort="Zeng, Jumei" uniqKey="Zeng J" first="Jumei" last="Zeng">Jumei Zeng</name>
</country>
<country name="Irlande (pays)">
<noRegion>
<name sortKey="Flanagan, Peter R" sort="Flanagan, Peter R" uniqKey="Flanagan P" first="Peter R" last="Flanagan">Peter R. Flanagan</name>
</noRegion>
<name sortKey="Moran, Gary P" sort="Moran, Gary P" uniqKey="Moran G" first="Gary P" last="Moran">Gary P. Moran</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000774 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000774 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28566496
   |texte=   Phosphate is the third nutrient monitored by TOR in Candida albicans and provides a target for fungal-specific indirect TOR inhibition.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28566496" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020